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ABSTRACT
Much of the evaluation and tuning of a search system relies on rele-
vance labels—annotations that say whether a document is useful for
a given search and searcher. Ideally these come from real searchers,
but it is hard to collect this data at scale, so typical experiments rely
on third-party labellers whomay or may not produce accurate an-
notations. Label quality is managed with ongoing auditing, training,
and monitoring.

We discuss an alternative approach. We take careful feedback
from real searchers and use this to select a large language model
(LLM), and prompt, that agrees with this feedback; the LLM can
then produce labels at scale. Our experiments show LLMs are as
accurate as human labellers and as useful for finding the best sys-
tems and hardest queries. LLM performance varies with prompt
features, but also varies unpredictablywith simple paraphrases. This
unpredictability reinforces the need for high-quality “gold” labels.
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1 LABELLINGRELEVANCE
Relevance labels—annotations that saywhether a result is relevant to
a searcher’s need—are essential for evaluating information retrieval
systems in the “offline” or “Cranfield” model [42], and as training
data for machine-learned systems [35]. Labels can come frommany
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sources, but in all cases their quality can be evaluated by comparing
them to some gold standard labels [43], from the person who had
the need [3]. Gold labels could originate from a relevance assessor
who develops their own query topic, then labels the results. Even
better, the originator could be a real searcher who did the query in
situ, knows exactly what they were trying to find, and gives careful
feedback on what’s relevant.

Third-party assessors may disagree with gold because they mis-
understand the searcher’s preference. If workers are systematically
misunderstanding searcher needs (i.e., the labels are biased) this can-
not be fixed by getting more data. For example, consider assessors
who do not understand which queries are navigational [9]. When
a first-party searcher wants to navigate to a site, the third-party
labels do not reward retrieval of that site. The resulting labels do
not help us build a search system that performs well on navigational
queries, and this can’t be solved by getting more labels from the
biasedworker pool.Workingwith human labellers, especially crowd
workers, can also lead to other well-documented problems includ-
ing mistakes, other biases, collusion, and adversarial or “spammy”
workers [16, 30, 46]. The resulting labels can be low-quality, and
using them for training or making decisions will develop a retrieval
system that makes similar errors.

The standard path to obtaining higher-quality labels involves
multiple steps (Figure 1). The first is to learn about real searchers
through interviews, user studies, direct feedback on their prefer-
ences, and implicit feedback on their preferences such as clicks [20].
Studying associated relevance labels, and looking for systematicmis-
takes, can indicate patterns where labellers are misunderstanding
what searchers want. The final step is to train labellers, by reference
to guidelines or examples, to minimise future errors: for example,
Google uses over 170 pages of guidelines to educate their search qual-
ity raters on what makes a good Google result [25]. Asking labellers
to followguidelines should lead to improvements in their output, and
that improvement can be measured against ground truth that either
comes fromreal searchers (did labellers agreewith real searchers?) or
against our best understanding of searcher preferences (did labellers
agree with examples carefully chosen by experts?).

This paper introduces a newway of reaching very high-quality
labels, that match real searcher preferences, by leveraging large lan-
guage models (LLMs). In practice, LLM performance on any task
can vary depending on the choice of model and the wording of the
prompt [56, 57]. Our approach is to get a small sample of feedback
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Figure 1: Labelling options discussed in this work, along with
the cost and accuracy we see at Bing. A traditional approach
uses gold and silver labels to improve crowdworkers; we use
gold labels to select LLMs and prompts.

that perfectly reflects real searcher preferences, because they come
from real searcherswho did a careful job of giving feedback.We then
choose an LLM prompt that generates labels, such that the labels
have the best match with first-party ground truth.

For other annotation tasks there is evidence that LLMs can be
comparable to crowd workers, using standard metrics such as agree-
ment or correlation [2, 13, 22, 36, 48]. However, we argue it is more
interesting to compare labels to a relatively small set of first-party
ground truth, from real searchers. We can then ask howwell differ-
ent labellers do—human or LLM—in generating labels that match
real searcher preferences. Our study shows that LLM labellers can
do better on this task than several populations of human labellers.
Less-trained crowd labellers, who are least knowledgeable about
searcher preferences, perform worst as demonstrated by agreement
with first-party ground truth. More trained and closely monitored
human raters perform better. LLMs, however, perform better on this
metric than any population of human labellers that we study. Our
results demonstrate the potential for LLMs as a tool for obtaining
high-quality relevance labels that match what searchers think.

2 LABELLINGRELEVANCEWITHAN LLM
To illustrate these ideas, we have experimented with queries, doc-
uments, and labels from TREC-Robust 2004 [50]. Our main question
waswhether LLMs could replicate the original TREC labels, assigned
by expert human assessors.

2.1 Machinery and data
TREC-Robust includes 250 topics (each with one canonical query,
so “query” and “topic” are synonymous in what follows)1. We took
queries from the TREC title field; description and narrativewere also
included in some prompts, as discussed below.

Official labels were taken from the TREC-Robust qrel file. These
labels were assigned by trained assessors, who had also provided
1One query had no relevant documents. It is included in our analysis but will always
score zero, on any metric, using the official labels.

the queries and topic descriptions, so although these are not “real”
in situ search scenarios with a real product, they fit our definition
of gold [3]: the person who labelled each document is the single best
judge of what the query and topic mean, and what sort of document
was responsive. If and when a third-party labeller (human or LLM)
deviates from gold, it is considered an error.

The original qrels files had 1031 “highly relevant” labels, 16381
“relevant”, and 293998 “not relevant”. In the first experiments below
we used a stratified random sample of 1000 qrels for each label, 3000
labelled topic : document pairs in total. In later experiments, we used
all documents returned in Robust 2004 runs at ranks 1–100, where
those documents were judged in TREC.

The experiments here used an in-house version of GPT-4 [38],
representativeof themost capablegenerally-availablemodels at time
ofwriting. Temperaturewas set at zero, so themodelwould select the
singlemost likely output; other parameterswere top𝑝 =1, frequency
penalty 0.5, presence penalty 0, without stopwords. In early testing
andwithout the prompts below, themodel was not able to reproduce
TREC documents or qrels with any accuracy above chance.

2.2 Prompting
We consider a number of prompt template variants (LLM inputs)
which is generally a cheap and fast way to improve quality [31].

Figure 2 gives an overall schema for the prompts. Italicised words
are placeholders, whichwere filled differently for each topic and doc-
ument, or otherwise varied to match the rest of the prompt. Shaded
text is optional and was included in some prompt variants.

Instructions, role. The prompt has four parts. The first part gives
task instructions. These are closely based on instructions given to
TREC assessors with two changes: First, the TREC instructions in-
cluded material on consistency in labels, which is not relevant to an
LLM case so was dropped here. Second, the phrase “you are a search
engine quality rater. . . ” replaces some of the TREC text which dis-
cusses the assessors’ past experience developing TREC tracks. Web
page quality is a complex notion, but search providers frequently
publish hints of what they are looking for. In particular, Google’s
labelling guidelines use the phrase “search quality rater” [25]. Half
of our prompts therefore include the phrase “you are a search quality
rater evaluating the relevance of web pages”, as a shorthand way
to reference both the guidelines (which are generally useful) and
surrounding discussion.

Context, description, narrative. The second part of the prompt
gives the query/document pair to be labelled. We always include the
query; in some configurations we include a more detailed version
from the TREC description and narrative fields; and we give the text
of the document itself.

Queries alone are an impoverished representation of an infor-
mation need, but TREC topics have additional text describing what
the query means (description) and which documents should be con-
sidered responsive (narrative). For example, for the query hubble
telescope achievements, the description restates that the query is
about achievements of the space telescope since its launch in 1991,
and the narrative clarifies that this is about scientific achievement
so results that only talk about shortcomings and repairs would not
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be considered relevant. In some prompts, we include this text as the
“description” and “narrative” fields.

Further instructions, aspects, multiple judges. The third part of the
prompt restates the task, including the instruction to “split this prob-
lem into steps” by explicitly considering the searcher’s intent as well
as the document. This follows observations that “chain of thought”
or “step by step” prompts can produce more reliable results [33, 53]
(something we have also observed, informally, in other work). In
some variants, we expanded this to explicitly ask for scores for two
aspects—topicality and trust—as well as an overall score. In some
variants, we also ask the model to simulate several human judges
and give scores from each.

Astraightforwardapproach, followingtheTRECguidelines,would
be to ask for an overall label for each pair of query : document. In past
workwith human labelling, we have found itmore useful to spell out
several aspects, and ask for ratings against these, before asking for an
overall label. These extra questions have been useful to help anchor
judge assessments, without constraining the final label (i.e. the over-
all label need not be a simple average of the per-aspect labels). Simi-
larly, with LLMs there has been demonstrated success with splitting
problems into steps with prompts such as “think step by step” [33].

Inspired by these ideas, in some prompt variants we explicitly ask
for labels over aspects of “relevance” aswell as for anoverall label. For
TRECRobust, we ask for labels for topicality and for trustworthiness.
There are no further definitions of either aspect.

People naturally vary in their labels, and aggregating several la-
bels for each result can reduce noise and increase sensitivity due
to the law of large numbers. In some prompts, we ask the model
to simulate several judges, generating the output of five simulated
judges from one LLM call. Since the outputs are generated in se-
quence they are not really independent labellers, but we previously
found it useful to generate and aggregate multiple labels in this way,
so we include it as a prompt variant here.

Output. The final part of the prompt specifies an output format,
and includes a snippet of JSON to encourage correct syntax.

This is a “zero-shot” prompt, in that it does not include any exam-
ples of the task. Liang et al. [34] report remarkably mixed results
across tasks and models, so it is certainly possible that we could
improve with one or more examples; it is also possible we could see
some regression. The length of TREC documents means it is hard
to include even one entire example, let alone more, and we leave
experimentation with one- or few-shot prompts as future work.

Note that we do not claim that this is the best prompt, LLM, nor
format; indeed, in Section 4.3 we will see that minor paraphrases
can make a material difference. Our interest here is in the range of
results we see with a reasonable LLM and prompt (as opposed to
the minimal prompts of Faggioli et al. [21] or Liang et al. [34]), the
practical impact of disagreements, and which features of a prompt
seem to help or hinder accuracy.

3 EVALUATINGTHE LABELS
How are we to choose between labels, or rather between labelling
processes? The main criterion is validity, in particular that labels
from any new source should agree with gold labels [21]. We can

role You are a search quality rater evaluating the relevance
of web pages. Given a query and a web page, you must
provide a score on an integer scale of 0 to 2 with the
following meanings:

2 = highly relevant, very helpful for this query
1 = relevant, may be partly helpful but might contain
other irrelevant content
0 = not relevant, should never be shown for this query

Assume that you arewriting a report on the subject of the
topic. If you would use any of the information contained
in theweb page in such a report, mark it 1. If theweb page
is primarily about the topic, or contains vital information
about the topic, mark it 2. Otherwise, mark it 0.

Query
A person has typed [query] into a search engine.

description, They were looking for: description narrative
narrative

Result
Consider the following web page.

—BEGINWEB PAGE CONTENT—
page text
—ENDWEB PAGE CONTENT—

Instructions
Split this problem into steps:

Consider the underlying intent of the search.

aspects Measure how well the content matches a likely intent of
the query (M).

aspects Measure how trustworthy the web page is (T).

Consider the aspects above and the relative importance
of each, and decide on a final score (O).

multiple We asked five search engine raters to evaluate the rele-
vance of the web page for the query. Each rater used their
own independent judgement.

Produce a JSON array of scores without providing any
reasoning. Example: [{"M": 2, "T": 1, "O": 1}, {"M":
1 . . .

Results
[{

Figure 2: General form of the prompts used in our TREC
Robust experiments. Italicisedwords are placeholders, filled
with appropriate values. Shaded text is optional, included
in some prompt variants.

measure this in two ways: by looking at the labels themselves or by
looking at preferences between documents. Additionally, labels are
typically aggregated to derive query-level or system-level scores,
and we may care whether machine labels would lead to similar
conclusions at these aggregated levels.

3.1 Document labels
The simplest way to evaluate a machine labelling process is to ask:
does it produce the same labels as would human labellers? If the
labels are the same for any document, then the machine process can
be directly substituted without any quality concerns.
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We can summarise differences between the machine and human
labels with a confusion matrix. The labels are on an ordinal scale
(not an interval scale), but if we assign scores 0 and 1 to the two
levels then we can further compute the mean difference between
the human and machine labels. In what follows we report accuracy
with themean absolute error (MAE), where 0 means the two sources
always agree on labels and 1 means they are maximally different.

In an earlier study, Faggioli et al. [21] report Cohen’s 𝜅 between
TREC assessors and GPT-3.5 and YouChat LLMs, and we report 𝜅
here as well.𝜅 ranges from 1 (complete agreement) through 0 (agree-
ment only by chance) to −1 (complete disagreement). For direct
comparison with Faggioli et al. we report 𝜅 over binarised labels,
where partly- and highly-relevant are conflated.

3.2 Document preference
Minimising document-level MAE gives us scores which are cali-
brated across queries, and interpretable for debugging and develop-
ment. Ranking, however, can use preferences between documents
rather than calibrated scores; this is also sufficient formany learning-
to-rank algorithms [35]. Here, it is the relative ordering of any two
documents that is important, and we canmeasure this with pairwise
accuracy or AUC: the chance that, given any two documents with
a human preference, the model’s preference is the same. A score of 1
means themodelalwaysagreeswith thehuman’spreferences, a score
of 0 means they always disagree, and a score of 0.5 is chance alone.

Another consideration is that two scoring schemes may differ
in scale and location: for example, one source may give scores 1–5
while another gives 1–10 or 0-99. MAE in this case is misleading,
even if there is a completely consistent mapping from one source to
another. Pairwise preferences are robust to this sort of difference.

3.3 Query ordering
Our primary interest is in generating (and evaluating) labels for
documents. However, past work has shown that errors in document
labels can be washed out when labels are aggregated to query-level
or system-level scores [3]. It is certainly possible that differences in
labels are not relevant to query- or system-level evaluations.

In consideration of this we can also order result lists (SERPs) by
some metric (e.g. RBP or MAP), according to the labels produced by
humans andwith regard to some fixed search engine; order the same
result lists, on the same metric, according to the labels produced by
a model; and ask how similar the two orderings are.

With this query-level analysis we are likely to be looking for
queries which do badly (i.e. where a system scores close to zero), so
here wemeasure correlation with rank-biased overlap (RBO) [52] af-
ter sorting the queries from lowest to highest scores. Thismeans that
(dis)agreements about which queries score worst—which queries
we want to investigate—count for more than (dis)agreements about
those queries that score well.

In our case, since the two rankings are permutations, there is a
well-defined lower bound for RBO. For ease of interpretation we use
this minimum to normalise RBO scores into the range 0 to 1, so 0 is
an exactly opposite ranking and 1 is an identical ranking. We use set
𝜙 =0.9, corresponding to an experimenter looking (on average) at
the first ten queries.

3.4 System ordering
The primary use of query:document scores is of course to score a
whole system, first by accumulating document scores to query scores
then by accumulating query scores to system scores. To see the effect
of disagreements between our human and LLM judges, we report
RBO over those systems which ran the same queries. Again, since
there are a fixed set of systems, we can calculate the minimum RBO
score and normalise. An experimenter might look seriously at the
top three or four systems, so we set 𝜙 =0.7.

3.5 Ground-truth preferences between results
An alternative view is that, since human-assigned labels may them-
selves be biased or noisy, labels should instead accurately predict
real searcher preferences.

Evaluating machine labels by their agreement with human labels
is useful, because in many situations we can use a large corpus of
existing labels. However, it does not speak to the validity of the la-
bels: that is, whether the labels (or a metric derived from the labels)
reflects some true searcher experience. If machine labels agree with
human labels to (e.g.) 80%, then the 20% disagreement might be a
fault with the machine, or poor-quality labels from the humans, or
some combination. We expand on this idea in Section 5.

3.6 Other criteria
We can imagine other criteria for choosing a labelling process. These
might include cost; time; reliability; scalability; flexibility; and ease
of debugging. In our experience labelling with LLMs is superior to
labelling by crowd workers on all these grounds and to labelling by
experts on all except debuggability.

4 RESULTS
After running the prompt, we converted the label to a score in [0,2].
Where we generated multiple labels, the final score is simply the
mean. In keeping with the TREC guidelines, if we prompted for as-
pectswe still consideredonly the overall label. If themodel generated
unparseable output, we dropped the result entirely: this happened
in 90 out of 96000 cases.

TREC-Robust included two sets of topics. Topics up to 650 came
from earlier editions of TREC, and had only binary relevance judge-
ments (“relevant” or “non-relevant”; 1 or 0). Topics 651–700 were
developed for the track, and have three-level judgements (adding
“highly relevant”, 2). Our prompts generated a scores from 0 to 2 for
all documents, in line with instructions to TREC-Robust assessors
for the new topics. Since comparisons are difficult between a three-
and a two-level scale, we follow TREC and Faggioli et al. [21] by con-
sidering “relevant” and “highly relevant” together, i.e. by binarising
the scores in all cases.

We evaluate the quality of these labels (not the documents) in
two ways: by comparing the model’s labels for each document to
the labels from TREC assessors, and by comparing the overall query
and system rankings that result. Additional tests are described in
the Appendix.

4.1 Comparing scores
Similar to Faggioli et al. [21], we compare these model-generated
scores to scores from the TREC assessors. Table 1 summarises the
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Table 1: Performance of the variant prompts of Figure 2,
compared to human labels on a stratified sample of the TREC
Robust data. R = include role, D = include description, N = in-
clude narrative, A = include aspects, M = include multiple
“judges”.★marks the best prompt in each case (significantly
better than the next-best performer, one-sided 𝑡 test, 𝑝 <0.05).

Document Document Document
scores scores preference

Prompt features MAE 𝜅 AUC

— — — — — 0.34±0.01 0.38±0.02 0.73±0.01

R — — — — 0.38±0.02 0.32±0.02 0.71±0.01
— D — — — 0.36±0.02 0.35±0.03 0.72±0.01
— — N — — 0.35±0.02 0.37±0.03 0.73±0.01
— — — A — 0.19±0.02 0.60±0.03 0.82±0.02
— — — — M 0.46±0.02 0.22±0.02 0.65±0.01

R D — — — 0.40±0.02 0.30±0.03 0.69±0.01
R — N — — 0.38±0.02 0.33±0.02 0.71±0.01
R — — A — 0.21±0.02 0.56±0.03 0.81±0.02
R — — — M 0.49±0.02 0.20±0.02 0.64±0.01
— D N — — 0.35±0.02 0.37±0.02 0.74±0.01
— D — A — 0.19±0.01 0.59±0.03 0.83±0.01
— D — — M 0.45±0.01 0.24±0.02 0.66±0.01
— — N A — 0.18±0.01 0.62±0.02 0.84±0.01
— — N — M 0.41±0.02 0.29±0.02 0.69±0.01
— — — A M 0.31±0.02 0.42±0.04 0.80±0.02

R D N — — 0.37±0.02 0.34±0.03 0.72±0.02
R D — A — 0.22±0.01 0.53±0.03 0.82±0.01
R D — — M 0.46±0.02 0.23±0.02 0.66±0.01
R — N A — 0.20±0.01 0.59±0.03 0.83±0.01
R — N — M 0.42±0.02 0.28±0.02 0.69±0.01
R — — A M 0.38±0.02 0.32±0.02 0.78±0.01
— D N A — 0.17±0.01 0.64±0.02★ 0.85±0.01★
— D N — M 0.40±0.02 0.31±0.02 0.70±0.01
— D — A M 0.31±0.01 0.42±0.02 0.80±0.01
— — N A M 0.27±0.02 0.49±0.03 0.82±0.02

R D N A — 0.19±0.01 0.61±0.02 0.84±0.01
R D N — M 0.41±0.01 0.29±0.02 0.69±0.01
R D — A M 0.37±0.02 0.34±0.02 0.80±0.01
R — N A M 0.33±0.01 0.39±0.02 0.80±0.01
— D N A M 0.26±0.01 0.50±0.02 0.82±0.01

R D N A M 0.16±0.02★ 0.51±0.06 0.77±0.03

models’ agreementwithhumanjudges,over the3000query:document
pairs, as we manipulate the prompt as above: there is one row for
each prompt, identified by which optional features are included. For
example, the row labelled “--N-M” corresponds to the prompt with
narrative andmultiple judges, but not role statement, description,
or aspects. For each prompt, we report the three document-level
metrics described above, plus a 95% confidence interval based on
20 bootstraps over documents. The best-performing prompt for each
metric is labelled with a★, and these are significantly better than
any other (𝑡 test, 𝑝 <0.05).

Performance is highly variable as we change the features—that
is, the quality of the labelling depends a great deal on the prompt
structure or template. For example, Cohen’s 𝜅 varies from as low

Table 2: Performance impact of the optional prompt features
in Figure 2. All changes are statistically significant and effects
are ±0.005 at a 95% CI.

Feature Change in𝜅

Role, R −0.04
Description, D +0.01
Narrative, N +0.06
Aspects, A +0.21

Multiple “judges”, M −0.13

as 0.20 (prompt “R---M”) to 0.64 (prompt “-DNA-”). We need to be
accordingly careful interpreting any claim based on a single prompt,
especially where that prompt has not been tuned against some exist-
ing labels; we also observe this in the variable performance reported
in Liang et al. [34], for example.

The performance here (𝜅 0.20 to 0.62) compares favourably to that
seen by Damessie et al. [18], who re-judged 120 documents from
TREC-Robust and saw 𝜅 of 0.24 to 0.52 for crowd workers, and 𝜅
of 0.58 for workers in a controlled lab. In particular, 6/32 prompts
here to better than 0.58 and only 3/32 do worse than 0.24. Our agree-
ment also compares favourably to reports from Cormack et al. [17],
who labelled TREC ad-hoc documents a second time, using a second
group of assessors. From their data we can compute Cohen’s𝜅=0.52
between two groups of trained human assessors.

On other data sets, Castillo et al. [12] report 𝜅 = 0.56 labelling
web pages for spam; Hersh et al. [26] report 𝜅 =0.41 on relevance in
the OHSUMED collection; Agarwal et al. [1] saw 𝜅=0.44 for news
sentiment; and Scholer et al. [44] reported that assessors seeing a
document for a second time only agreed with their first label 52% of
the time. Faggioli et al. [21] reported𝜅 from 0.26 to 0.40 on binarised
labels from TREC-8 and TREC Deep Learning. Faggioli et al. used
another LLM but with relatively simple prompt, reinforcing LLMs’
sensitivity to their prompt.

On this metric, at least, we can conclude that with minimal iter-
ations LLMs are already at human quality for this collection and for
some prompts. In Section 5 we will see that, in a web setting, LLMs
can perform substantially better than third-party judges.

4.2 Effect of prompt features
Table 1 gives results for 32 prompt templates, made from turning
five features on or off. To try to summarise the effect of each feature
individually, Table 2 reports the effect of each feature on 𝜅—that is,
the effect of including a prompt feature independent of any other
features being on or off.

Contrary to our expectations, there is a statistically significant
negative effect due to role (R) and multiple “judges” (M): 𝜅 decreases
byanaverage 0.04 and0.13 respectively.Addingdescription (D) gives
an insubstantial boost (only 0.01 points of 𝜅). Adding a narrative (N)
leads to a boost of 0.06; this is modest, but perhaps the background
knowledge of LLMs (especially on public data like this) is enough
that the narrative adds little beyond the query terms.

Aspects (A) give a substantial improvement in 𝜅 against TREC
assessors, +0.21. Topicality and trustworthiness are the two aspects
we used here, but of course that are not the only aspects that might
matter, andwedonot claim they are the best selection; at Bingweuse
several aspects, and measure the LLM’s performance on all of these
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Original,𝜅 =0.64
Given a query and a web page, youmust provide a score on an integer
scale of 0 to 2 with the following meanings:
2 = highly relevant, very helpful for this query
1 = relevant, may be partly helpful but might contain other irrelevant
content
0 = not relevant, should never be shown for this query
Assume that you are writing a report on the subject of the topic. If you
would use any of the information contained in the web page in such a
report, mark it 1. If the web page is primarily about the topic, or contains
vital information about the topic, mark it 2. Otherwise, mark it 0. . . .

Paraphrase,𝜅 =0.72
Rate each web page for how well it matches the query, using these
numbers: 0 = no match, 1 = some match, 2 = great match. Think of
writing a report on the query topic. A web page gets 2 if it is mainly
about the topic or has important information for the report. A web page
gets 1 if it has some information for the report, but also other stuff. A
web page gets 0 if it has nothing to do with the topic or the report. . . .

Figure 3: Examples of paraphrased prompts (extracts), based
on prompt format “-DNA-” (description, narrative, and
aspects).

with good results. It seems likely, in fact, that it is the step-by-step
nature of labellingwith aspects that gives rise to these improvements
rather than the particulars of the aspects themselves.

Note that this presents features in isolation, when in fact any
prompt could have zero, one, two, three, four, or all five of these
features at once. The effects are not additive: for example, including
both a role statement and multiple judgements improves 𝜅 despite
those features being unhelpful individually. The best-performing
prompt in Table 1 is of the form “-DNA-”, which is expected from
this feature-level analysis.

4.3 Effect of paraphrasing prompts
We have seen that LLM peformance varies considerably as the
prompt is varied, even when the task and the input data are fixed.
This raises a question: how sensitive is the LLM not just to coarse
prompt features, such as asking for aspects, but to quirks of phras-
ing? In other words, if we rephrased “assume that you are writing
a report” to “pretend you are collecting information for a report”,
or to “you are collecting reading material before writing a report”,
would the labels change? If so, then our LLM is highly sensitive to
such apparently trivial considerations. That would mean that, first,
the results above are only representative of a wide range of possible
performance; and second, any serious attempt to use LLMs at scale
needs to explore a large and unstructured prompt space.

To test this, we took the “-DNA-” prompt—the best above—and
generated 42 paraphrases by rewriting the text “Given a query and
a web page . . . Otherwise, mark it 0” and by rewriting the text “Split
this problem into steps: . . . Produce a JSON array of scores without
providing any reasoning”. Figure 3 gives some examples.

Figure 4 shows the resulting spread of label quality, measured
again asCohen’s𝜅 against the labels fromTRECassessors and across
our stratified sample of 3000 documents. Each paraphrase is repre-
sented by one dark line, showing the mean 𝜅 and a 95% confidence
interval derived from 20 bootstraps over documents. There is a large

Figure 4: Variation in Cohen’s 𝜅 between LLM labels and
human labels, over a stratified sample of 3000 documents
fromTREC-Robust, as we paraphrase the prompt.

range, from mean 𝜅 = 0.50 (moderate agreement) to mean 𝜅 = 0.72
(substantial agreement, and better than the reference values cited
above [1, 12, 17, 21, 26]). The empirical 95% confidence interval, over
all bootstraps and all paraphrases, is 0.50–0.71 (plotted at the left-
hand edge of Figure 4). In contrast to Wang et al. [51], we saw no
consistent or practical effect due to prompt or document length.

This is a wide range from a single prompt design, and from Fig-
ure 3 it is not at all apparent which versions would score higher or
why. The outsized effect of simple paraphrases has been observed
in other domains as well [56, 57]. This leads to two observations.
First, the measured performance of any prompt—including those in
Table 1—should be taken as a single sample from a wider range of
potential performance. Small tweaks to the wording could result in
noticeably different performance, even without any changes to the
prompts’ overall design. Second, it is prudent to fix an overall design,
and then explore rephrasing and other options. We note work by
Pryzant et al. [41], Yang et al. [55], Zhou et al. [57], and others that
suggests alternatives for fine-tuning prompts.

4.4 Effect of document selection
Given the different performance of the different prompts, and in-
deed the different paraphrases, it is tempting to choose the best-
performing variant and commit to using it for future labelling. This
of course carries a risk: performance on these topics and documents
might not predict performance on other, unseen, topics and docu-
ments. The conventional guard against this is a train:test split. Here,
we can interpret “training” as the choice of prompt, and we used
repeated splits to understand the risk of choosing the best variant.
For each of 1000 iterations, we randomly split our 3000 TREC and
LLM labels into two sets of 1500 documents.Wemeasured𝜅 for each
prompt (or paraphrase) over the first 1500, noted the best performer
(highest 𝜅), and measured again on the second 1500.

The results were consistent. When scoring prompts (Table 1), in
all 1000 iterations the best-performing prompt on the first split also
beat the baseline “-----” on the second split. Thatmeans that, starting
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from the baseline prompt, if we chose an alternative because it was
the best improvement on one set of documents, we can be almost
certain that prompt would still be an improvement on another set. In
829/1000 first splits, the best-performing variant was -DNA-, which
is again consistent with the above but also suggests the choice is
reliable. (The next best performer was --NA-, 139 times out of 1000;
in practice these two prompts are very similar.)

Looking at the 42 paraphrases of Figure 4, in 989/1000 iterations
the best-performingparaphrase on thefirst 1500 documents still beat
the initial -DNA- prompt on the second 1500. The best-performing
paraphrase was again consistent: variant #13 had the highest 𝜅 on
the first split in 838/1000 iterations. This ismarginally less consistent
than the choice of overall prompt design.

These observations suggest that while performance is variable,
there is little chance of regret. That is, if we start with a baseline
prompt and generate variants (e.g. by adding features or by para-
phrasing) and choose to switch to the best variant, that is a safe
choice. If we choose the best variant on some set of documents, per-
formance on unseen documents will almost never turn out to be
worse than the baseline.

4.5 Query difficulty and run effectiveness
Document labels themselves are not the goal of most evaluations.
Instead, we typically map these labels to numeric values and then
use ametric such as average precision to aggregate to scores for each
query and run. The scores for queries let us investigate instances
where we do badly, meaning where there is scope for improvement;
the scores for runs let us choose which combination of algorithms
and parameters performs the best overall.

Accordingly, anotherwayto judgea labellingschemeisbywhether
(under somemetric) it gives the same rankingof queries or runs. Ifwe
swapped labelling schemes, would we still identify the same queries
as hard?Would we still identify the same runs as top performers?

In Table 3 we report the consistency of query and run rankings as
we switch fromhuman-assigned toLLM-assigned labels. In each case
wescoreall thequerieswithonemetric—e.g.P@10—basedonTREC’s
human labels, and score them again based on our LLM labels. (We
collected additional labels so that every document retrieved to depth
100, inevery run,was labelledwithprompt -DNA- except thosewhich
were never labelled at TREC. For consistencywith TREC, we assume
these unlabelled documents are not relevant.) This gives two rank-
ings of queries. The consistency between these rankings ismeasured
withRBO,normalised so that a score of 0 represents an invertedorder
andascoreof1 representsan identicalordering.Weassumeanexperi-
menterwould bewilling to look at theworst tenqueries, so set𝜙 =0.9.

The exercise is repeated for all 110 runs, assuming we want to
find the best three or four runs (𝜙 =0.7). Since runs from the same
group are likely very similar, we also repeat the exercise for the best
run for each group—this simulates choosing the best approach (or
perhaps vendor), rather than the best parameter settings. Again we
assume we want to find the best three or four.

The consistency of rankings, in all three cases, depends on the
metric being used: ordering by MAP is more consistent for queries,
andorderingbyaverageP@10 ismore consistent for runsandgroups.
Group-level rankings are more consistent than runs or queries,
no matter the metric. It is harder to be consistent when ranking

Table 3: Consistency of rankings on LLM labels compared
to human labels, replicating all qrels in TREC-Robust to a
depth of 100.

Hardest queries Best runs Best groups
RBO 𝜏 RBO 𝜏 RBO 𝜏

P@10 0.40 0.43 0.79 0.82 0.97 0.86
RBP@100, 𝜙 =0.6 0.42 0.44 0.63 0.86 0.91 0.80

MAP@100 0.48 0.42 0.50 0.77 0.58 0.65

250 queries than when ranking 110 runs or 14 groups, and small per-
turbations make a larger difference in ranking since many queries
have similar scores. Nonetheless we see that for any problem and
choice of metric, labels from LLMs lead to overall rankings which
are at least similar to those from human labels, and our imagined
experimenters would make similar choices. For example, under all
metrics the top three runs are the same; the top five groups are con-
sistent under P@10, the top three under RBP@100, and three of the
top four under MAP@100. The worst-performing query is the same
under TREC or LLM labels for P@10 and RBP@100, and two of the
top three are the same under MAP@100.

Of course perfect agreement is unlikely even with humans la-
belling. By way of comparison, Voorhees [49] reports 𝜏 =0.94 across
runs, using labels from different assessors. This is on a different data
set, with correspondingly different judgements (and only 33 runs),
but give a rough upper bound for how consistent runs could ever be.
Faggioli et al. [21] demonstrate 𝜏 from 0.76 to 0.86 on TREC Deep
Learning data, again under slightly different circumstances (notably,
shorter documents and fewer runs). We see 𝜏 from 0.77 (MAP@100)
to 0.86 (P@10) for our 110 runs with full documents. Given the𝜅 and
AUC figures in Table 1, this is at least promising and plausibly as
good as most human labellers.

4.6 Observations
We see somewhat better results than those reported by Faggioli et al.
[21], particularly in agreement on the raw labels (𝜅). There are at
least two factors at work. First, we are using a more capable model
(GPT-4 with local modifications, compared to stock GPT-3.5); and
second, our prompts are based on our experiences in Bing, and rel-
atively long, whereas those of Faggioli et al. are simpler. Even small
wording changes can make a difference (Figure 4), and selecting
prompt features makes a bigger difference still (Table 1). Again, this
demonstrates that time spent on this configuration—which is com-
parable to time spent on instruments and instructions for crowd or
in-house workers—can pay dividends.

These results show that LLMs are competent at labelling—at the
minimum, with GPT-4 and in the TREC-Robust setting. The labels
are as close to those from humans as we could expect, given the
disagreement between people to begin with, and we can reasonably
consistently identify the hardest queries, best runs, and best groups.

We now turn to LLM labelling at scale, in the context of a running
search engine, where LLMs have proved not just more efficient but
more accurate than the status quo.



SIGIR ’24, July 14–18, 2024, Washington, DC, USA Paul Thomas, Seth Spielman, Nick Craswell, and Bhaskar Mitra

Table 4: Labelling schemes compared. “Crowd” are crowd
workers via our in-house platform, “LLM” is the best-
performing prompt from private experiments. This gives an
overall comparison, but depends on our particular resources,
contracts, training, and other details.

Relative Relative Relative
accuracy Latency throughput cost

Employees +24% hours–days ×1/100 ×8
Best crowd +19% hours–days ×1/15 ×5

Typical crowd — hours ×1 ×1
LLM (GPT-4) +28% minutes–hours ×10 ×1/20

5 WEB SEARCHATBING
The results above are on one TREC corpus, with labels from trained
assessors working over simulated information needs. At Bing we
have also seen good results with our web corpus, queries from real
use, and labels from searchers with real needs.

5.1 Experience with LLMs
At Bing we have made heavy use of crowd workers, for many years,
to scale to the number of labels, languages, and markets we need.
Despite systems for detecting low quality labels and workers, this
scale has come at a cost of biases, mistakes, and adversarial workers.

In Table 4 we summarise our experiences, considering full-time
employees (mainly scientists and engineers working on metrics);
our best crowd workers, recruited and trained for metrics problems
andwith close oversight; our general pool of crowdworkers, subject
to quality control but minimal training; and our LLMmodels.

In our experience LLMs do remarkably well. They have proved
more accurate than any third-party labeller, including staff; they
are much faster end-to-end than any human judge, including crowd
workers; they scale to much better throughput; and of course are
many times cheaper. This has let usmeasuremanymore results than
previously, with associated gains in sensitivity (we can see smaller
effects if we label more things). The end-to-end speed, also much
improved, is helping Bing engineers try more things and get more
done. We have been using LLMs, in conjunction with expert human
labellers, for most of our offline metrics since late 2022.

5.2 Evaluating labellers and prompts
In Bing’s case we have found breadth preferable to depth: that is, we
prefer small data for many queries to the TREC-Robust approach
of more data for fewer queries. All else being equal, we also prefer
queries which resemble a real web search workload rather than the
invented needs of TREC-Robust.

Our gold labels are, therefore, largely gathered in situ: from em-
ployees and contractors in the context of their normal search activity,
and also from feedback from the general public. This data is collected
at or close to the time of need, by people who had the need, and in
viewof a full SERP (including e.g. images,maps, and advertisements).
These properties mean the data is very reliable: if a label says some
document is good (or bad) for the search, it is almost certainly so.

Our ground truth corpus comprises queries, descriptions of need,
metadata like location and date, and at least two example results
per query. Results are tagged—again, by the real searcher—as being
good, neutral, or bad and these tags may be reviewed byMicrosoft

staff prior to inclusion in our corpus. Similar to the TREC experi-
ments above, from this we can derive pairs of preferred and non-
preferred results and then treat labelling and scoring as a binary
classification problem: the preferred result should score higher than
the non-preferred, for all queries and pairs of results. Again, we can
use pairwise agreement to evaluate the labels. At the time of these
experiments our ground corpus comprised about 2.5 million such
pairs, in about ten languages and from about fifty countries.

Using three labels does conflate small distinctions (“it’s a little
bit better”, e.g. good vs neutral results) and large distinctions (“it’s
a lot better”, good vs bad results), but our ground truth corpus has
distinct advantages in that we can collect preferences from real
searchers in their own context, and providing a preference is easier
than providing absolute labels [11].

Our ground truth corpus gives us an evaluation which is indepen-
dent of the labels from third-party judges. In particular, bymeasuring
against searcher-generated labels we can identify cases where the
model is more accurate than third-party human judges; if we only
had third-party labels, we could identify labelling disagreements but
not resolve themonewayor the other. ForAUCscores to be useful, of
course the data must represent some population of interest: at Bing
we stratify the triples by important result attributes (for example
language, recency, authority, or topicality). This is not a uniform
sample but instead lets us identify areas of particular concern.

5.3 Monitoring the LLM system
The results above give us a good deal of confidence that an LLM,
appropriately prompted, can produce high-quality labels for at least
some important aspects. As an additional safety check, every week
we take a stratified sample of recent labels from the model. Those
are re-labelled by trained assessors, and we monitor for shifts in
disagreement rate or in patterns of disagreement; any changes are
investigated by a metrics team with expertise in both the crowd and
LLM processes. In practice, large changes are rare, and resolved in
favour of the LLM as often as in favour of the humans.

In addition to the human oversight of our LLM based labels we
have a large set of queries thatwe consistently relabel. Day to day,we
expect no change in this set. This is designed to monitor the health
of labelling systems and allows a rapid response to any change.

Our systemtherefore sits somewherebetweenClarkeet al.’s “man-
ual verification” and “fully automated” options [15], with the scale
of automation but some control and quality assurance frommanual
verification. Disagreements, and analyses of these, inform future de-
velopments of themetrics and the gold set aswell as the LLM labeller.

We note, too, that although LLM labels are important to our eval-
uation they are only one part of a web-scale search system. Amongst
other things, web search needs to account for spam, misinformation,
piracy, and other undesirable material; needs to treat some topics
carefully and with editorial input (health, finance, and others); and
needs to account for diversity in the final ranking. Our LLMprompts
do not replace any safety systems.

6 POTENTIAL LIMITATIONS AND PITFALLS
We should acknowledge potential limitations and negative exter-
nalities of this approach. Language models are known to reproduce
and amplify harmful stereotypes and biases [4, 5, 7, 10, 23], and we
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do not know the extent of these biases in relevance labelling. This
may intensify existing representational and allocative harms from
search systems [37, 45]. Other forms of bias may also manifest, such
as under-estimating the relevance of longer documents [28]. It may
be tempting to employ a variety of different prompts and underlying
LLMs to address this issue, but that may or may not have the desired
effect if these variations exhibit similar biases. LLM-generated labels
may also vary languages, locations, and demographic groups due
to disparate training data. This may create undesirable incentives
for more pervasive data collection.

Optimising towards LLM-based labels also risks over-fitting to
the idiosyncrasies of the LLM rather than improving relevance
[14, 24, 29, 47]. Our data suggests this is not yet a problem—we
are closer to the ground truth with LLMs than with third-party
assessors—but this may change as large models play a bigger role
in ranking or as web authors start optimising for LLM labels. LLM-
generated labelsmayalso showbias towards rankers that themselves
incorporate LLMs. Alternatively, wemay view the use of LLM-based
labels to evaluate and train cheaper models as a form of knowl-
edge distillation [27], where over-fitting to the teacher may be less
problematic. Interestingly, in this context the LLM-based labeller
represents a new class of machine learned relevance estimators that
can be augmented with assessment guidelines as side-information.

Biases may arise not just from LLMs learning spurious correla-
tions, but due to differences in LLM and human attention [6, 32].
Whether website designers can take advantage of such biases to
unfairly gain more exposure, or whether optimising towards what
LLMs deem important leads to undesirable shifts and homogenisa-
tion of online content2, are also important questions.

Lastly, the ecological costs of these LLMs are still heavily de-
bated [4, 8, 19, 39, 40, 54] and an important area for further study.

7 CONCLUDINGREMARKS
Evaluating information retrieval typically relies on relevance labels,
and we have several options for collecting these. Figure 1 illustrates
the options discussed in this paper. As experimenters, our goal is to
move up and left, to greater accuracy and lower cost. Traditionally
the goal has been to improve crowd labels—moving the bottom-left
point higher up—and this has involved (i) collecting insight from
real searchers, (ii) turning this into guidelines, (iii) using trusted
workers to read these guidelines and generate “silver” labels, and
(iv) giving the sameguidelines to crowdworkers. The crowdworkers
are monitored against the silver labels, and improvements largely
come from improving the guidelines.

Our approach is different: we collect high-quality gold labels from
searchers themselves and use these labels to evaluate and select
prompts for an LLM. The labels we get from our model are high
quality, and in practice are more useful than those from even trained
assessors. They are of course cheaper to acquire, and easier to collect
for new languages or other new context; but they are also more
accurate than third-party labels at predicting the preference of real
searchers. This has had a tangible effect: retraining parts of our
ranker using labels from this model, while keeping all else constant,
resulted in about sixmonths’ relevance improvement in a single step.

2https://www.theverge.com/2019/5/28/18642978/music-streaming-spotify-song-
length-distribution-production-switched-on-pop-vergecast-interview

Of the options described by Faggioli et al. [21], our labelling is
closest to “human verification”, although we do not deliberately
vary the LLM’s characteristics. We do retain human oversight and
audit examples of LLM output, although not every label. Quality
control, and indeed measuring LLM quality in general, is (as antici-
pated by Faggioli et al.) difficult as in most cases our LLM is “beyond
human” quality and we can no longer rely on third-party assessors.
Our gold collection, with queries and labels from real searches and
real searchers, helps a great deal but of course searchers can still
be swayed by distracting captions or unreliable results. (We review
every query and URL in the corpus, but this only adds another hu-
man to the loop.) Contra Clarke et al., we do not see machine-made
assessments degrading quality at all; nor do we consider them “very
expensive”, at least compared to trained annotators.

In someways, this is an easy case: the languagemodelwas trained
onweb text andwe are labellingweb text. The notion of judgingweb
pages is likely already encoded, although we do not have clear evi-
dence for this. Further, the topics can be addressed in the corpus: they
do not need any personal, corporate, or otherwise restricted data,
nor any particular domain-specific knowledge not already found in
the text. Using LLMs for labelling suggests new and more difficult
applications, for example labelling private corpora where we can-
not give human assessors access. From the experiments above, we
cannot verify this will be effective, and this remains for future work.
We have also measured our labels in part with test sets—both TREC,
and Bing’s corpus—which have clear task descriptions. If we were to
sample a query load from a running system,wewould not have these
descriptions and our labels would be less accurate. We also have a
capable model: Liang et al. [34] saw large differences from model
to model over a range of tasks, although given our observations in
Section 4 this could also be due to model:prompt interactions. As
newmodels emerge, they will of course need to be tested.

The results above use one particular model. As models improve,
it becomes harder to measure our labels as the measures start to sat-
urate [21]. We have found it necessary to build harder gold sets over
time, encoding finer distinctions to better distinguish labellers and
prompts.There isnoequivalentmechanisminopendatasets, and this
may become pressing should LLM-based labelling become common.

It is certainly possible to use LLMs to label documents for relevance
and therefore to evaluate search systems; it is possible to get perfor-
mance comparable to TREC judges and notably better than crowd
judges. There are many choices that make a difference, meaning we
need metrics-for-metrics to distinguish a good from a bad system,
as well as ongoing audits and human verification. In our experience,
having true “gold” judgements makes it possible to experiment with
prompt andmetric design.Wehave found the approachproductive at
Bing, andhaveused it for greater speed, reduced cost, and substantial
improvements in our running system.
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A FURTHER EXPERIMENTALRESULTS
A.1 LLM-vs-human confusionmatrix
Additionally to the evaluations in Section 4, we can directly com-
pareourmodel-generatedscores toassessorscores foreachquery:document
pair in our stratified TREC sample. Table 5 gives a confusion matrix
for oneprompt and all 3000query:document pairs. (There are 32 such
matrices, one for each set of prompt features or equivalently one for
each row of Table 1.) We can see that in this case, the LLM is more
likely to say “not relevant” than were TREC assessors (44% vs 33%),
and is correspondingly inaccurate (68% agreementwith TREC,when
the LLM says “not relevant”). An LLM assessment of “relevant” or
“highly relevant” however, is reliable (94% agreement).

A.2 Effect of prompt length
Using an LLM to compare texts, Wang et al. [51] saw an effect of
prompt length—the longer the text, the more positive the LLM’s
assessment. We checked for similar effects in our data by modelling
the LLM’s signed error as a response to prompt length. This controls
for any effect of length on true relevance; if longer documents are
just more (or less) likely to be relevant, then the LLM should not be
penalised for reflecting this. ReplicatingWang et al.’s effect would
require a positive effect: that is, errors should get more positive (the
LLM should overestimate more, or be more optimistic) as prompts
got longer.

Controlling forprompt features,we sawnosubstantial correlation
between prompt length and signed error. Effects varied according
to prompt features, with modelled score shifting between −9×10−6
and 1×10−5 per character of prompt. This corresponds to only a
shift in score of -0.05 to 0.06 at the median prompt length, which (al-
though statistically significant) is of no practical significance given
the MAEs of Table 1.
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